Abstract

Grain size is one of the critical agronomic traits governing grain yield and quality in rice. However, the underlying genetic mechanisms that control grain size in rice are poorly understood. We used an introgression line derived from Zhonghui 8015 and Oryza rufipogon Griff. This introgression line was evaluated under two different environmental conditions to dissect the quantitative trait loci controlling grain size. Genome-wide association study (GWAS) was performed using 28 193 SNPs through a general linear model, and 56 significant SNPs on different loci associated with the 4 grain size traits were detected. Cloned genes including GS3 and qGL3 showed substantial effects on grain length and size. Seven new stable loci were identified with pleiotropic effects on grain size. Haplotype, gene expression analyses, combined gene-based associations, and functional annotations permitted the shortlisting of important dominant genes including GS3 and qGL3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.