Abstract

Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a destructive disease of wheat (Triticum aestivum) found throughout the United States. Host resistance is the only economically feasible option for managing the disease; however, few SNB-resistant wheat cultivars are known to exist. In this study, we report findings from an association mapping (AM) of resistance to P. nodorum in 567 spring wheat landraces of diverse geographic origin. The accessions were evaluated for seedling resistance to P. nodorum in a greenhouse. Phenotypic data and 625 polymorphic diversity array technology (DArT) markers have been used for linkage disequilibrium (LD) and association analyses. The results showed that seven DArT markers on five chromosomes (2D, 3B, 5B, 6A, and 7A) were significantly associated with resistance to P. nodorum. Genetic regions on 2D, 3B, and 5B correspond to previously mapped quantitative trait loci (QTL) conferring resistance to P. nodorum whereas the remaining QTL appeared to be novel. These results demonstrate that the use of AM is an effective method for identifying new genomic regions associated with resistance to P. nodorum in spring wheat landraces. Additionally, the novel resistance found in this study could be useful in wheat breeding aimed at controlling SNB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.