Abstract

BackgroundLettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Resistance in iceberg cultivars is conferred by Tvr1 - a single, dominant gene that provides durable resistance. This study describes fine mapping of the resistance gene, analysis of nucleotide polymorphism and linkage disequilibrium in the Tvr1 region, and development of molecular markers for marker-assisted selection.ResultsA combination of classical linkage mapping and association mapping allowed us to pinpoint the location of the Tvr1 resistance gene on chromosomal linkage group 2. Nine molecular markers, based on expressed sequence tags (EST), were closely linked to Tvr1 in the mapping population, developed from crosses between resistant (Salinas and Salinas 88) and susceptible (Valmaine) cultivars. Sequencing of these markers from a set of 68 cultivars revealed a relatively high level of nucleotide polymorphism (θ = 6.7 × 10-3) and extensive linkage disequilibrium (r2 = 0.124 at 8 cM) in this region. However, the extent of linkage disequilibrium was affected by population structure and the values were substantially larger when the analysis was performed only for romaine (r2 = 0.247) and crisphead (r2 = 0.345) accessions. The association mapping approach revealed that one of the nine markers (Cntg10192) in the Tvr1 region matched exactly with resistant and susceptible phenotypes when tested on a set of 200 L. sativa accessions from all horticultural types of lettuce. The marker-trait association was also confirmed on two accessions of Lactuca serriola - a wild relative of cultivated lettuce. The combination of three single-nucleotide polymorphisms (SNPs) at the Cntg10192 marker identified four haplotypes. Three of the haplotypes were associated with resistance and one of them was always associated with susceptibility to the disease.ConclusionWe have successfully applied high-resolution DNA melting (HRM) analysis to distinguish all four haplotypes of the Cntg10192 marker in a single analysis. Marker-assisted selection for dieback resistance with HRM is now an integral part of our breeding program that is focused on the development of improved lettuce cultivars.

Highlights

  • Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae

  • Two hundred and fifty three F8 Recombinant-inbred lines (RILs) were screened for resistance to dieback in multiple trials and 192 of these RILs were randomly selected for genotyping with molecular markers

  • The segregation ratio in the 192 individuals that were used for mapping of the resistance gene was 92 resistant to 100 susceptible

Read more

Summary

Introduction

Lettuce (Lactuca saliva L.) is susceptible to dieback, a soilborne disease caused by two viruses from the family Tombusviridae. Susceptibility to dieback is widespread in romaine and leaf-type lettuce, while modern iceberg cultivars are resistant to this disease. Lettuce dieback disease is widespread in commercially grown romaine and leaf-type lettuces [1]. Susceptibility to dieback is widespread in romaine and leaf lettuces, modern iceberg-type cultivars remain completely free of symptoms when grown in infested soil [1,6]. It appears that the resistance observed in iceberg cultivars was originally introduced into the iceberg genepool from the cultivar Imperial around 70 years ago [3,7]. Application of marker-assisted selection (MAS) can reduce the need for field screening and accelerate development of dieback resistant material

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call