Abstract

Klebsiella pneumoniae is considered an important opportunistic multidrug-resistant pathogen. Extended spectrum β-lactamases (ESBLs) and expression of a multitude of virulence factors may work in a harmony resulting in treatment failure. This study was undertaken to compare the virulence characteristics and genetic relatedness between ESBL and non-ESBL producing K. pneumoniae. Methods. Antibiotic sensitivity test of all isolates was determined by disc diffusion assay. Phenotypic and genotypic detection of ESBL were done. Various virulence factors and some virulence factor-associated genes were screened. Random amplified polymorphic DNA (RAPD) was employed to investigate the genetic fingerprints of ESBL from non-ESBL producing K. pneumoniae. Results. 50% of isolates were ESBL producers. A significant association was observed between ESBL production and biofilm (strong and moderate), serum resistance, and iss gene. Moreover, significant association between non-ESBL producers and hypermucoviscosity was identified. Dendogram analysis of RAPD profile classified K. pneumoniae isolates into four clusters (a, b, c, and d). Seventy-six percent of ESBL producers belonged to cluster a. In conclusion, this study suggests a correlation between ESBL production and some virulence factors. Therefore, success of treatment depends mainly on increased clinicians awareness and enhanced testing by laboratories to reduce the spread of these isolates.

Highlights

  • Klebsiella pneumoniae is responsible for many communityonset and nosocomial infections

  • The dominant antibiotics used for treating infections today are the β-lactam antibiotics, which inhibit transpeptidases participating in bacterial cell wall synthesis

  • Klebsiella pneumoniae is a common pathogen associated with both community and hospital-acquired infections including respiratory and urinary tract infections and wound and blood infections [27]

Read more

Summary

Introduction

Klebsiella pneumoniae is responsible for many communityonset and nosocomial infections. The increasingly high level of antimicrobial drug resistance prevalence is an exaggerated problem, especially for healthcare providers. K. pneumoniae can confer resistance to the majority of antibiotics by applying vast amounts of resistance mechanisms, leading to high mortality and morbidity rates. Such resistant bacteria urge the importance of focusing on antimicrobial resistance. The dominant antibiotics used for treating infections today are the β-lactam antibiotics, which inhibit transpeptidases participating in bacterial cell wall synthesis. These beta-lactam antibiotics can be deactivated by β-lactamase enzymes [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.