Abstract

This study investigated whether reductions in finger blood flow (FBF) during and after vibration are similarly dependent on the magnitude and duration of the vibration. FBF on the left and right hand was measured every minute during, and for 1 h following, exposure of the right hand to one of three magnitudes of 125-Hz sinusoidal vibration (0, 22, or 88 ms(-2) rms) for one of two durations (7.5 or 15 min). Each of five experimental sessions was comprised of five periods: (i) no force and no vibration (5 min), (ii) 2-N force and no vibration (5 min), (iii) 2-N force and vibration (7.5 or 15 min), (iv) 2-N force and no vibration (5 min), and (v) no force and no vibration (60 min). Vibration reduced FBF in the exposed and unexposed hands, both during and after vibration. With increased magnitude of vibration, there was increased vasoconstriction in all fingers during and after exposure, and longer recovery times after vibration exposure. With increased duration of vibration, there were no changes in vascular responses during exposure but increased vasoconstriction after exposure and prolonged recovery times. With the greater vibration magnitude, the reduction in FBF during exposure was correlated with the time taken to recover after exposure. Subjects with greater reduction in blood flow during vibration exposure also have stronger and longer vasoconstriction during subsequent recovery. The correlation between vascular changes during and after vibration exposure suggests similar mechanisms control FBF during and after vibration exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.