Abstract

The association between the phospholipid transfer protein (PLTP) gene rs4810479 single-nucleotide polymorphism (SNP) and serum lipid levels is largely unknown. This investigation aimed to evaluate the relationship between the PLTP rs4810479 SNP, several environmental risk factors, and serum lipid parameters in the Chinese Maonan and Han nationalities. Polymerase chain reaction-restriction fragment length polymorphism, gel electrophoresis, and direct sequencing were employed to determine the PLTP rs4810479 genotypes in 633 Maonan and 646 Han participants. The frequencies of CC, CT, and TT genotypes and the C allele were different between Maonan and Han groups (29.07%, 53.08%, 17.85%, and 55.61% vs. 35.60%, 49.70%, 14.70%, and 60.45%, respectively, P < 0.05). The C allele carriers in the Maonan group had higher high-density lipoprotein cholesterol levels than the C allele noncarriers, but this finding was only found in Maonan males but not in females. The C allele carriers in Han males had lower total cholesterol and low-density lipoprotein cholesterol levels than the C allele noncarriers. Serum lipid profiles were also affected by several traditional cardiovascular risk factors in both populations. There might be an ethnic- and/or sex-specific association between the PLTP rs4810479 SNP and serum lipid traits.

Highlights

  • Cardiovascular disease (CVD) is one of the leading causes of disability and early death worldwide, accounting for about one-third of the global mortality rate [1]. e cost of CVD constitutes a major economic burden to the society [2]

  • Many studies have proven that serum or plasma triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) concentrations are independent risk factors for CVD [3,4,5]

  • A number of genome-wide association studies (GWASes) have identified more than 95 genetic loci associated with plasma lipid phenotypes

Read more

Summary

Introduction

Cardiovascular disease (CVD) is one of the leading causes of disability and early death worldwide, accounting for about one-third of the global mortality rate [1]. e cost of CVD constitutes a major economic burden to the society [2]. Cardiovascular disease (CVD) is one of the leading causes of disability and early death worldwide, accounting for about one-third of the global mortality rate [1]. Many studies have proven that serum or plasma triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) concentrations are independent risk factors for CVD [3,4,5]. It is well known that various genetic and environmental factors can lead to abnormalities of plasma lipids and lipoproteins [6,7,8]. Plasma lipid and lipoprotein concentrations are themselves highly heritable—estimates range from 40% to 60%. A number of genome-wide association studies (GWASes) have identified more than 95 genetic loci associated with plasma lipid phenotypes. One of the newly discovered loci is the phospholipid transfer protein (PLTP) gene [9,10,11,12]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call