Abstract

We have reported that photodynamic therapy (PDT) using the photosensitizer phthalocyanine (Pc) 4 and red light damages the antiapoptotic protein Bcl-2. Recently, using transient transfection of Bcl-2 deletion mutants, we identified the membrane anchorage domains of Bcl-2 as necessary to form the photosensitive target. However, it is not clear how Bcl-2 photodamage sensitizes cells to Pc 4-PDT-induced apoptosis, whether overall cell killing is also sensitized or how up-regulation of Bcl-2 in tumors might make them more or less responsive to Pc 4-PDT. In this study we report on MCF-7c3 cells (human breast cancer cells expressing stably transfected procaspase-3) overexpressing wild-type Bcl-2 or certain deletion mutants in either a transient or a stable mode. By flow cytometric analysis of transiently transfected cells, we found that wild-type Bcl-2, Bcl-2delta33-54 and Bcl-2delta37-63 (each of which can be photodamaged) protected cells from apoptosis caused by Pc 4-PDT. In contrast, Bcl-2delta210-239, which lacks the C-terminal transmembrane domain and cannot be photodamaged, afforded no protection. We then evaluated the PDT sensitivity of transfected cell lines stably overexpressing high levels of wild-type Bcl-2 or one of the Bcl-2 mutants. Overexpression of wild-type Bcl-2, Bcl-2delta33-54 or Bcl-2delta37-63 resulted in relative resistance of cells to Pc 4-PDT, as assessed by morphological apoptosis or loss of clonogenicity. Furthermore, overexpression of Bcl-2 also inhibited the activation-associated conformational change of the proapoptotic protein Bax, and higher doses of Pc 4 and light were required to activate Bax in cells expressing high levels of Bcl-2. Many advanced cancer cells have elevated amounts of Bcl-2. Our results show that increasing the dose of Pc 4-PDT can overcome the resistance afforded by either Bcl-2 or the two mutants. PDT regimens that photodamage Bcl-2 lead to activation of Bax, induction of apoptosis and elimination of the otherwise resistant tumor cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.