Abstract

The objectives in this work were to study the association between the morphological and productive characteristics in Pennisetum sp. clones, and to identify the morphological characteristics responsible for the productivity in Pennisetum cp. clones. The canonical correlations were evaluated and the path analysis was made from the simple genotypic correlation matrix between the morphological and productive characteristics of eight Pennisetum sp. clones (Taiwan A-146 2.37, Taiwan A-146 2.27, Taiwan-146 2.114, Merker México MX 6.31, Mott, HV-241, Elefante B and IRI-381). The canonical correlations were significant at 1% probability by the Chi-square test. The first pair of canonic factors, with correlation of 0.9999, related the plants with the highest dry matter content to plants with lower leaf area indexes, light perception and leaf angle. The second pair of canonic factors, with correlation of 0.9999, related the plants with the highest dry matter production to the plants with higher basal tiller density, height, and low green leaf number per tiller. The results of the path analysis indicated that the light interception is determinant in dry matter content expression of Pennisetum sp. clones, while the basal tiller density and plant height are responsible for dry matter production in these clones.

Highlights

  • Elephant grass (Pennisetum purpureum Schum.) is one of the most used forage grasses in Brazil

  • The canonical correlations were evaluated and the path analysis was made from the simple genotypic correlation matrix between the morphological and productive characteristics of eight Pennisetum sp. clones (Taiwan A-146 2.37, Taiwan A-146 2.27, Taiwan-146 2.114, Merker México MX 6.31, Mott, HV-241, Elefante B and IRI-381)

  • The results of the path analysis indicated that the light interception is determinant in dry matter content expression of Pennisetum sp. clones, while the basal tiller density and plant height are responsible for dry matter production in these clones

Read more

Summary

Introduction

Elephant grass (Pennisetum purpureum Schum.) is one of the most used forage grasses in Brazil. According to Kretschemer & Pitman (2001), there are around 25 elephant grass cultivars and 16 hybrids with millet selected and grown throughout the world. The species germplasm is highly heterozygote and presents high variability, mostly coming from the protogyny. Genotypes (elephant grass and its millets hybrids) may present distinct morphological and productive characteristics. The study of the relationship between the morphological and productive characteristics of the plant is rather important for improvement. According to Floss (2006), the main genetic gains in cereals obtained in the last few years are

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call