Abstract

The formation mechanism underlying the blue eggshell characteristic has been discovered in birds, and SLCO1B3 is the key gene that regulates the blue eggshell color. Insertion of an endogenous retrovirus, EAV-HP, in the SLCO1B3 5′ flanking region promotes SLCO1B3 expression in the chicken shell gland, and this expression causes bile salts to enter the shell gland, where biliverdin is secreted into the eggshell, forming a blue shell. However, at different laying stages of the same group of chickens, the color of the eggshell can vary widely, and the molecular mechanism underlying the eggshell color change remains unknown. Therefore, to reveal the molecular mechanism of the blue eggshell color variations, we analyzed the change in the eggshell color during the laying period. The results indicated that the eggshell color in Lushi chickens can be divided into three stages: 20–25 weeks for dark blue, 26–45 weeks for medium blue, and 46–60 weeks for light blue. We further investigated the expression and methylation levels of the SLCO1B3 gene at eight different weeks, finding that the relative expression of SLCO1B3 was significantly higher at 25 and 30 weeks than at other laying weeks. Furthermore, the overall methylation rate of the SLCO1B3 gene in Lushi chickens increased gradually with increasing weeks of egg production, as shown by bisulfite sequencing PCR. Pearson correlation analysis showed that methylation of the promoter region of SLCO1B3 was significantly negatively correlated with both SLCO1B3 expression in the shell gland tissue and eggshell color. In addition, we predicted that CpG5 and CpG8 may be key sites for regulating SLCO1B3 gene transcription. Our findings show that as the level of methylation increases, methylation of the CpG5 and CpG8 sites hinders the binding of transcription factors to the promoter, reducing SLCO1B3 expression during the late period and resulting in a lighter eggshell color.

Highlights

  • Recent years have seen substantial progress in the field of optimizing poultry science through genetic improvement

  • To reveal the molecular mechanism underlying the blue eggshell color variations, we analyzed the change in the eggshell color during the laying period, and the results indicated that the eggshell color in Lushi chickens can be divided into three stages: 20–25 weeks for dark blue, 26– 45 weeks for medium blue, and 46–60 weeks for light blue

  • Previous research has shown that the color change of avian eggs is associated with evolutionary biology (Kilner, 2010)

Read more

Summary

Introduction

Recent years have seen substantial progress in the field of optimizing poultry science through genetic improvement. Eggs of poultry and other birds can vary widely in terms of coloration and patterning, with colors ranging from brown or white to red, violet, or turquoise, and the potential for speckling and other patterning (Wang et al, 2009). Pyrroles are responsible for this diversity of color, with protoporphyrin and biliverdin being the key known eggshell pigments (Kennedy and Vevers, 1976; Gorchein et al, 2010; Igic et al, 2010). The unique geographic environment provides a relatively wide range of foraging habitats for the Lushi chicken. This breed can lay blue eggs and has superior meat quality

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call