Abstract

If the sprouting of granule cell axons or mossy fibers in the dentate gyrus is critical for the generation of spontaneous seizures in temporal lobe epilepsy (TLE), one could hypothesize that epileptic animals or humans with increased sprouting would have more frequent seizures. This hypothesis was tested by analyzing the data gathered from experimental and human epilepsy. In experiment I (rats with "newly diagnosed" TLE), self-sustained status epilepticus was induced in rats by electrically stimulating the amygdala. Thereafter, the appearance of spontaneous seizures was monitored by continuous video-electroencephalography (EEG) until the animal developed two spontaneous seizures and for 11 d thereafter. Rats were perfused for histology, and mossy fibers were stained using the Timm method. In experiment II (rats with "recently diagnosed" TLE), status epilepticus was induced in rats and the development of seizures was monitored by video-EEG for 24 h/d every other day for 60 days. All animals were then perfused for histology. In experiment III (rats with "chronic" TLE), animals were monitored by video-EEG for 24 h/d every other day for 6 months before histologic analysis. To assess mossy fiber sprouting in human TLE, hippocampal sections from 31 patients who had undergone surgery for drug-refractory TLE were stained with an antibody raised against dynorphin. Our data indicate that the density of mossy fiber sprouting is not associated with the total number of lifetime seizures or the seizure frequency in experimental or human TLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call