Abstract
BackgroundMultiple sclerosis (MS) is a demyelinating disease of the central nervous system, predominating within young adults. Cognitive disorders are common in MS and have are associated with several Magnetic Resonance Imaging (MRI) markers, especially brain atrophy. Many have found the symbol digit modalities test (SDMT) to be the most sensitive individual cognitive measure relevant to MS. However, the relationship between SDMT and regional brain cortex thickness in young adults with relapsing-remitting multiple sclerosis (YA-RRMS) has been little explored. The purpose of this study was to investigate the association between the SDMT and regional cortex thickness in YA-RRMS by FreeSurfer, which is an automatic brain structure segmentation method. MethodTwenty-eight YA-RRMS patients (18–35 years old) were enrolled in the present study. Informed consent and information including gender, age, disease duration, number of relapses, annual relapse rate was collected from all patients. Clinical cognitive evaluations (SDMT and auditory verbal learning test (AVLT)) and daily performance: activities of daily living (ADL) were assessed in the present study. MRI scans were performed at the Institute of Neurosurgery of Tiantan Hospital. Twenty-eight matched healthy controls (HC) MRI data were obtained from Tiantan Hospital database. Data on thirty-four points of bilateral cortical structure thickness using statistically defined brain regions-of-interest from FreeSurfer were obtained from all participants. ResultsPatients with RRMS exhibited extensively thinner cerebellar cortex compared with HC. SDMT scores were significantly correlated with AVLT subentries (IM, immediate memory; DRM, delayed recall memory; LTRM, long-term recognition memory) in YA-RRMS patients (P < 0.05). SDMT was strongly correlated with regional cortex thickness differences of the right temporal pole (r = 0.68) and bilateral parahippocampal areas (right r = 0.62; left r = 0.60), and moderately correlated with regional cortex thickness differences including the left superior temporal and right insula (r = 0.57 and 0.56, respectively) in YA-RRMS patients. ConclusionThe present study has shown the SDMT is strongly correlated with selected cortex regions including the bilateral parahippocampal area and the right temporal pole which are involved in geometric structures processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.