Abstract

Parkinson's disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the substantia nigra and it is known to involve the accumulation of α-synuclein (α-syn), which is a neuroprotein that promotes degeneration of dopaminergic neurons. Serum/glucocorticoid-related kinase 1 (SGK1) is involved in the physiological and pathological processes in neurons. The aim of this study was to examine the relationship between SGK1 and α-syn expression in muscle tissue of a PD model and in C2C12 cells. Western blotting, immunohistochemistry, and immunofluorescence microscopy confirmed reduced SGK1 and increased α-syn expression in skeletal muscle of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice compared to the control group. To determine the relationship between SGK1 and α-syn, SGK1 small interfering RNA (siRNA) knockdown was performed in C2C12 cells, which showed that suppression of SGK1 levels resulted in increased α-syn expression. The main finding of our study is that reduction of SGK1 expression contributes to the pathogenesis of PD by increasing the expression of α-syn in skeletal muscle of MPTP-treated mice and C2C12 cells. This study confirms that decreased SGK1 induces increased α-syn expression in skeletal muscle, which suggests that maintaining SGK1 expression may improve PD symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call