Abstract

Trace elements such as copper are essential micronutrients. Traditionally, copper has been studied in the context of micronutrient deficiencies. Recent studies in both animals and humans, however, have revealed that elevated blood copper can also have adverse effects on cognitive function since free copper can cross the blood-brain barrier and subsequently impose oxidative stress to neuronal cells. However, most of these human studies were conducted in adult populations with and without cognitive decline, and there are few studies on the effect of excess copper on cognitive function in children. This project seeks to look at the effects of elevated copper levels on cognitive development in a population of school age children (ages 10–14 years with mean age of 12.03 years and standard deviation (SD) of 0.44) from Jintan, China. Briefly, serum copper levels and working memory test scores were collected from a sample of 826 children with a mean serum copper level of 98.10 (SD 0.75). Copper level was considered as a categorical variable (taking the first group as those with as ≤84.3 μg/dL, the second group as >84.3 and ≤110.4 μg/dL, and the third group as >110.4 μg/dL with the cut-off values defined by the first and third quartiles of the sample). Results showed a significant association between high copper levels (>110.4 μg/dL) and poorer working memory in boys but this association was not seen in lower copper levels in either sex. These results suggests that in school age children, like in adults, elevated copper levels have the potential to adversely affect cognition.

Highlights

  • Micronutrients are known to support neurotransmitter synthesis and brain function [1]

  • This paper aims to fill in the gap by testing the relationship between serum copper levels and working memory outcomes in normal school age children from Jintan, China

  • One possible reason for this inconsistency is that the Lam et al study [7] examined general cognitive function, while the present study primarily focused on working memory; copper may affect different cognitive domains differently

Read more

Summary

Introduction

Micronutrients are known to support neurotransmitter synthesis and brain function [1]. While the relationship between cognitive function and micronutrient iron and zinc levels has received significant attention in the past few decades, few studies have examined the relationship between copper and neurocognition in humans. Epidemiological studies in normal populations support this relationship by showing an association between high serum copper levels and low cognitive performance in older adults [7] and the general adult population [13]. This predictive effect of copper on cognition may interact with dietary level of saturated or trans-fats. In a large community study, accelerated cognitive decline was found in persons whose diets were high in copper and saturated and trans fats, but high copper intake alone did not show such trend [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.