Abstract

BackgroundXeroderma pigmentosum complementation group C (XPC) is a DNA damage recognition protein that plays an important role in nucleotide excision repair and can reduce oxidative stress, which may be involved in the development of preeclampsia (PE). Therefore, the aim of this study was to explore whether XPC polymorphisms were relevant to the genetic susceptibility to PE in Chinese Han women.MethodA total of 1276 healthy pregnant women were included as the control group and 958 pregnant women with PE as the case group. DNA was extracted from peripheral blood samples to perform genotyping of loci rs2228001 and rs2228000 in XPC through real-time quantitative polymerase chain reaction (PCR). The relationship between XPC and susceptibility to PE was evaluated by comparing the genotypic and allelic frequencies between the two groups of pregnant women.ResultsPolymorphism of rs2228000 may be associated with PE risk and allele T may play a protective role (genotype, χ2 = 38.961, P < 0.001 and allele χ2 = 21.746 P < 0.001, odds ratio (OR) = 0.885, 95% confidence interval (CI) = 0.840-0.932). No significant difference was found between the two groups in rs2228001,(genotype χ2 = 3.148, P = 0.207 and allele χ2 = 0.59, P = 0.442, OR = 1.017, 95% CI = 0.974–1.062). When the frequencies of genotypes and alleles for early- and late-onset PE, mild PE and severe PE were compared with those of controls, the results were consistent with the large clinical sample.ConclusionOur data suggest that the genetic variant rs2228000 in XPC may be associated with PE risk in Chinese Han women, and that pregnant women with the TT genotype have a reduced risk of PE. Further investigations are needed to confirm these findings in other regions or larger prospective populations.

Highlights

  • Preeclampsia (PE) is defined as a special disease that occurs after 20 weeks of pregnancy, with hypertension and proteinuria or one of the following characteristics, thrombocytopenia, liver and kidney function damage, and pulmonary oedema [1], and seriously affects maternal and child health and even leads to death or morbidityWang et al BMC Pregnancy and Childbirth (2021) 21:787Compared with normotensive pregnant women, patients with PE are in a state of extremely increased oxidative stress because of the decreased antioxidant capacity

  • Polymorphism of rs2228000 may be associated with PE risk and allele T may play a protective role (genotype, χ2 = 38.961, P < 0.001 and allele χ2 = 21.746 P < 0.001, odds ratio (OR) = 0.885, 95% confidence interval (CI) = 0.8400.932)

  • No significant difference was found between the two groups in rs2228001,(genotype χ2 = 3.148, P = 0.207 and allele χ2 = 0.59, P = 0.442, odds ratios (ORs) = 1.017, 95% confidence intervals (CIs) = 0.974–1.062)

Read more

Summary

Introduction

Preeclampsia (PE) is defined as a special disease that occurs after 20 weeks of pregnancy, with hypertension and proteinuria or one of the following characteristics, thrombocytopenia, liver and kidney function damage, and pulmonary oedema [1], and seriously affects maternal and child health and even leads to death or morbidityWang et al BMC Pregnancy and Childbirth (2021) 21:787Compared with normotensive pregnant women, patients with PE are in a state of extremely increased oxidative stress because of the decreased antioxidant capacity. As a sensitive indicator of DNA damage, phosphorylated H2AX was highly expressed in PE placentas and in maternal metaphase stromal cells cultured in vitro with oxides [9]. Consistent with this result, Takagi et al [10] found that 8-hydroxy-20-deoxy-guanosin (8-OHdG), a representative DNA damage marker, was detected at higher concentrations in the serum of patients with PE than in healthy pregnant women. It is essential to explore the role of genetic polymorphisms in the DNA repair system in PE pathogenesis based on DNA damage. The aim of this study was to explore whether XPC polymorphisms were relevant to the genetic susceptibility to PE in Chinese Han women

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.