Abstract

This study examined the association between plantarflexion torque variability during quiet bipedal standing (QS) and during plantarflexion force- and position-matching tasks (FT and PT, respectively). In QS, participants stood still over a force plate, and the mean plantarflexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg FT and PT (performed with the participants seated with their right knee fully extended). During FT participants controlled the force level exerted by the foot against a rigid restraint, while during PT they controlled the angular position of the ankle when sustaining equivalent inertial loads. Standard deviation (SD) of plantarflexion torque was computed from torque signals acquired during periods with and without visual feedback. Significant correlations were found between plantarflexion torque variability in QS and FT (r = 0.8615, p < 0.0001 and r = 0.8838, p = 0.0003 for visual and no visual conditions, respectively) as well as between QS and PT (r = 0.8046, p = 0.003 and r = 0.7332, p = 0.0103 for visual and no visual conditions, respectively), regardless of vision availability. No significant differences were found between the correlations for Qs vs FT and QS vs PT (t(8) = 0.4778, p = 0.6455 and t(8) = 1.6819, p = 0.1310 for visual and no visual conditions, respectively), as assessed by “Hotelling-Williams” tests for equality among dependent correlations. The results indicate that simple measurements of plantarflexion torque fluctuations during FT and PT may be used to estimate balance ability. From a practical standpoint, it is suggested that rehabilitation protocols designed to regain/improve balance function may be based on the performance of FTs or PTs executed in a seated position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.