Abstract

BackgroundUnderstanding the correlates of self-rated health (SRH) can help public health professionals prioritize health-promotion and disease-prevention interventions. This study aimed to investigate the association between multiple comorbidities and global SRH and age-comparative SRH.MethodsA total of 512,891 participants aged 30–79 years old were recruited into the China Kadoorie Biobank study from ten regions between 2004 and 2008. Multivariate logistic regression models were used to estimate the odds ratios (ORs) for the associations between comorbidities (including diabetes, hypertension, coronary heart disease, rheumatic heart disease, stroke, tuberculosis, emphysema/bronchitis, asthma, cirrhosis/chronic hepatitis, peptic ulcer, gallbladder disease, kidney disease, fracture, rheumatic arthritis, psychiatric disorders, depressive symptoms, neurasthenia, head injury and cancer) and SRH. Population attributable risks (PARs) were used to estimate the contribution of multiple comorbidities to poor global SRH and worse age-comparative SRH.ResultsAfter adjusting for covariates, suffering from various diseases increased the chance of reporting a poor global SRH [OR (95% CI) ranged from 1.10 (1.07, 1.13) for fracture to 3.21 (2.68, 3.83) for rheumatic heart disease] and a worse age-comparative SRH [OR (95% CI) ranged from 1.18 (1.13, 1.23) for fracture to 7.56 (6.93, 8.25) for stroke]. From the population perspective, 20.23% of poor global SRH and 45.12% of worse age-comparative SRH could attributed to the cardiometabolic diseases, with hypertension (7.84% for poor global SRH and 13.79% for worse age-comparative SRH), diabetes (4.35% for poor global SRH and 10.71% for worse age-comparative SRH), coronary heart disease (4.44% for poor global SRH and 9.51% for worse age-comparative SRH) and stroke (3.20% for poor global SRH and 10.19% for worse age-comparative SRH) making the largest contribution.ConclusionsVarious diseases were major determinants of global and age-comparative SRH, and cardiometabolic diseases had the strongest impact on both global SRH and age-comparative SRH at the population level. Prevention measures concentrated on these conditions would greatly reduce the total burden of poor SRH and its consequences such as poor quality of life and use of health care services.

Highlights

  • Understanding the correlates of self-rated health (SRH) can help public health professionals prioritize health-promotion and disease-prevention interventions

  • Various diseases were major determinants of global and age-comparative SRH, and cardiometabolic diseases had the strongest impact on both global SRH and age-comparative SRH at the population level

  • Outcome variables To assess SRH status of each participant, two questions were asked in baseline interview: 1) How is your current general health status: excellent, good, fair, or poor? 2) How is your current health status compared with someone of your own age: better, about the same, worse, or don’t know? We considered the first question as global SRH and the second one as age-comparative SRH

Read more

Summary

Introduction

Understanding the correlates of self-rated health (SRH) can help public health professionals prioritize health-promotion and disease-prevention interventions. Self-rated health (SRH), a common but comprehensive measure of a person’s global (physical and mental) health status, has been widely used to describe the health status of an individual and a population in epidemiology surveys because of the collected data [1]. Respondents are asked to rate their own health status and there are three types of SRH that are frequently assessed in different studies. In the age-comparative SRH, respondents are asked to rate their health status as better, the same, or worse compared with other people of their ages [3]. As for time-comparative SRH, respondents are asked to compare their present health to the health status a year earlier [4]. SRH is one of the indicators recommended for health monitoring by the World Health Organization [5], and has been demonstrated to be a powerful predictor of morbidity and mortality in different populations [2, 6, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call