Abstract

Studies reported the existence of instability catch (IC) during trunk flexion in patients with chronic low back pain (CLBP). However, different movement speeds can cause different neuromuscular demands resulting in altered kinematic patterns. In addition, kinematic characterization corresponding to clinical observation of IC is still limited. Therefore, this study aimed to determine (1) the association between movement speed and kinematic parameters representing IC during trunk flexion and (2) the differences in kinematic parameters between individuals with and without CLBP. Fifteen no low back pain (NoLBP) and 15 CLBP individuals were recruited. Inertial measurement units (IMU) were attached to T3, L1, and S2 spinous processes. Participants performed active trunk flexion while IMU data were simultaneously collected. Total trunk, lumbar, and pelvic mean angular velocity (T_MV, L_MV, and P_MV), as well as number of zero-crossings, peak-to-peak, and area of sudden deceleration and acceleration (Num, P2P, and Area), were derived. Pearson’s correlation tests were used to determine the association between T_MV and L_MV, P_MV, Num, P2P, and Area. An ANCOVA was performed to determine the difference in kinematic parameters between groups using movement speed as a covariate. Significant associations (P < 0.05) were found between movement speed and other kinematic parameters, except for Area. Results showed that L_MV significantly differed from the P_MV (P = 0.002) in the CLBP group, while a significant between-group difference (P = 0.037) was found in the P_MV. Additionally, significant between-group differences (P < 0.05) in P2P and Area were observed. The associations between movement speed and kinematic parameters suggest that movement speed changes can alter kinematic patterns. Therefore, clinicians may challenge lumbopelvic neuromuscular control by modifying movement speed to elicit greater change in kinematic patterns. In addition, the NoLBP group used shared lumbar and pelvic contributions, while the CLBP group used less pelvic contribution. Finally, P2P and Area appeared to offer the greatest sensitivity to differentiate between the groups. Overall, these findings may enhance the understanding of the mechanism underlying IC in CLBP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.