Abstract
Biological rhythms that oscillate with periods close to 24 h (circadian cycles) are pervasive features of mammalian physiology, facilitating entrainment to the 24 h cycle generated by the rotation of the Earth. In the absence of environmental time cues, circadian rhythms default to their endogenous period called tau, or the free-running period. This sustained circadian rhythmicity in constant conditions has been reported across the animal kingdom, a ubiquity that could imply that innate rhythmicity confers an adaptive advantage. In this study, we found that the deviation of tau from 24 h was inversely related to the lifespan in laboratory mouse strains, and in other rodent and primate species. These findings support the hypothesis that misalignment of endogenous rhythms and 24 h environmental cycles may be associated with a physiological cost that has an effect on longevity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.