Abstract
BackgroundTo examine the association between lipoprotein(a) (Lp(a)) levels, LPA (rs10455872 and rs3798220) and IL1F9 (rs13415097) single nucleotide polymorphisms (SNPs) with coronary artery calcification (CAC), an important predictor for coronary artery disease (CAD).MethodsWe used data from 3799 (mean age ± SD: 59.0 ± 7.7 years, 47.1% men) Heinz Nixdorf Recall study participants. We applied linear regression models to explore the relation between the log-transformed Lp(a) levels and LPA and IL1F9 SNPs with loge (CAC + 1). The association between the SNPs and log-transformed Lp(a) levels was further assessed using linear regression. The models were adjusted for age and sex (Model 1) and additionally for Lp(a) levels (Model 2).ResultsWe observed a statistically significant association between log-transformed Lp(a) levels and CAC (Model 1: beta per log-unit increase in Lp(a) levels = 0.11; 95% confidence interval [95% CI] [0.04; 0.18], p = 0.002). Furthermore, the LPA SNP rs10455872 showed a statistically significant association with CAC (Model 1: beta per allele = 0.37 [0.14; 0.61], p = 0.002). The association between rs10455872 and CAC was attenuated after adjustment for Lp(a) levels (Model 2: beta per allele = 0.26 [− 0.01; 0.53], p = 0.06). Both LPA SNPs also showed a statistically significant association with Lp(a) levels (Model 1: betars10455872 per allele: 1.56 [1.46; 1.65], p < 0.0001 and betars3798220 per allele: 1.51 [1.33; 1.69], p < 0.0001)). The Mendelian randomization analysis showed that Lp(a) is a causal risk factor for CAC (estimate per log-unit increase in Lp(a) levels (95% CI), p: 0.27 [0.11; 0.44], p = 0.001). The IL1F9 SNP did not show any statistically significant association with Lp(a) levels or with CAC.ConclusionsWe provide evidence for the association of LPA rs10455872 with higher levels of Lp(a) and CAC in our study. The results of our study suggest that rs10455872, mediated by Lp(a) levels, might play a role in promoting the development of atherosclerosis leading to cardiovascular disease events.
Highlights
To examine the association between lipoprotein(a) (Lp(a)) levels, Lipoprotein gene (LPA) and Interleukin 1 family (IL1F9) single nucleotide polymorphisms (SNPs) with coronary artery calcification (CAC), an important predictor for coronary artery disease (CAD)
Differences in low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total cholesterol and use of lipidlowering medication were observed in the Lp(a) stratified groups (Table 1)
We found that i) LPA rs10455872 is associated with CAC, ii) the association between rs10455872 and CAC was attenuated after adjustment for Lp(a), iii) Lp(a) showed an association with CAC, iv) both LPA SNPs were associated with Lp(a) and v) we did not find any evidence of an association of IL1F9 rs13415097 with Lp(a) or CAC
Summary
To examine the association between lipoprotein(a) (Lp(a)) levels, LPA (rs10455872 and rs3798220) and IL1F9 (rs13415097) single nucleotide polymorphisms (SNPs) with coronary artery calcification (CAC), an important predictor for coronary artery disease (CAD). Coronary artery calcification (CAC) is an important predictor of CAD, and its extent is directly related to the atherosclerotic plaque burden. Two other SNPs that are in high linkage disequilibrium (LD) near the proinflammatory gene (IL1F9) (rs17659543 and rs13415097) achieved GWA significance with mitral annular calcification (MVC). Both AVC and MVC have been associated with the risk of CVD [16,17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.