Abstract

Cochlear implant (CI) electrode design has changed over time. Changes in intracochlear electrode design might influence the spread of neural activation along the auditory nerve and the number of independent channels. This study aimed to investigate the impact of intracochlear electrode design on the electrode-neuron interface using electrophysiological measures. Prospective cohort study. A single tertiary hospital. Fifty-two ears who were implanted with CI divided into 3 groups based on the design of intracochlear electrode arrays. Twenty-three ears were implanted with lateral wall straight electrodes. Eighteen ears were implanted with the slim perimodiolar electrode, and 11 ears were implanted with the old perimodiolar electrode. Various electrically-evoked compound action potential (ECAP) metrics were measured to quantify spread of excitation and channel interaction. ECAP threshold and slope were not significantly different among groups. ECAP spread of excitation (SOE) half-width and channel interaction index (CII) were significantly larger in subjects implanted with the lateral wall straight electrodes, indicating a wider spread of excitation compared to those with perimodiolar electrodes. Electrode impedance was significantly lower in subjects implanted with perimodiolar electrodes than those with lateral wall electrodes. Perimodiolar electrode groups yielded significantly narrower SOE half-widths and smaller CII than the lateral wall straight electrode group. This may indicate that the electrode array that hugged the modiolus had less overlap in neural excitation between adjacent electrodes, resulting in reduced channel interaction and potentially better spectral resolution than the electrode array positioned more laterally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.