Abstract

Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. See the Acknowledgements section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call