Abstract

Autism spectrum disorder, which is characterized by impaired social communication and stereotypic behaviors, affects 1%-2% of children. Although prenatal exposure to toxicants has been associated with autistic behaviors, most studies have been focused on shifts in mean behavior scores. We used Bayesian quantile regression to assess the associations between log2-transformed toxicant concentrations and autistic behaviors across the distribution of behaviors. We used data from the Maternal-Infant Research on Environmental Chemicals study, a pan-Canadian cohort (2008-2011). We measured metal, pesticide, polychlorinated biphenyl, phthalate, bisphenol-A, and triclosan concentrations in blood or urine samples collected during the first trimester of pregnancy. Using the Social Responsiveness Scale (SRS), in which higher scores denote more autistic-like behaviors, autistic behaviors were assessed in 478 children aged 3-4 years old. Lead, cadmium, and most phthalate metabolites were associated with mild increases in SRS scores at the 90th percentile of the SRS distribution. Manganese and some pesticides were associated with mild decreases in SRS scores at the 90th percentile of the SRS distribution. We identified several monotonic trends in which associations increased in magnitude from the bottom to the top of the SRS distribution. These results suggest that quantile regression can reveal nuanced relationships and, thus, should be more widely used by epidemiologists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.