Abstract
Previous studies demonstrated that variations of fT3, even within the euthyroid range, can influence cardiac function. Our aim was to investigate whether thyroid hormones, even within the euthyroid range, are associated with the magnitude of exercise-induced cardiac remodeling in Olympic athletes. We evaluated 1342 Olympic athletes (mean age 25.6 ± 5.1) practicing different sporting disciplines (power, skills, endurance, and mixed). Athletes underwent blood testing (thyroid stimulating hormone, fT3, and fT4), echocardiography, and exercise-stress testing. Athletes taking thyroid hormones, affected by thyroiditis, or presenting TSH out of ranges were excluded. The level of thyroid hormones varied according to the type of sporting discipline practiced: endurance athletes presented the lowest TSH (p < 0.0001), fT3 (p = 0.007), and fT4 (p < 0.0001) in comparison to the remaining ones. Resting heart rate (HR) was positively correlated to fT3 in athletes of different disciplines (power: p = 0.0002, R2 = 0.04; skill: p = 0.0009, R2 = 0.05; endurance: p = 0.007, R2 = 0.03; and mixed: p = 0.04, R2 = 0.01). The same results were seen for peak HR in the exercise-stress test in athletes engaged in power, skill, and endurance (respectively, p < 0.0001, R2 = 0.04; p = 0.01, R2 = 0.04; and p = 0.005, R2 = 0.02). Moreover, a positive correlation was observed with cardiac dimensions, i.e., interventricular septum (power: p < 0.0001, R2 = 0.11; skill: p = 0.02, R2 = 0.03; endurance: p = 0.002, R2 = 0.03; mixed: p < 0.0001, R2 = 0.04). Furthermore, fT3 was directly correlated with the left ventricle (LV) end-diastolic volume in skills (p = 0.04, R2 = 0.03), endurance (p = 0.04, R2 = 0.01), and mixed (p = 0.04, R2 = 0.01). Thyroid hormones, even within the euthyroid range, are associated with cardiac adaptive response to exercise and may contribute to exercise-induced cardiac remodeling.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.