Abstract

We have investigated the association of the recently described 140-kDa cell membrane receptor for fibronectin with the cytoskeleton or with substratum-bound fibronectin. Using a monospecific polyclonal antibody to the 140-kDa receptor, we have demonstrated that most of the receptor molecules are soluble in nonionic detergent either in suspension culture CHO cells or in CHO cells attached to and spread on a fibronectin-coated substratum. This may suggest that putative linkages of the receptor either to fibronectin or to detergent-insoluble cytoskeletal components are labile to nonionic detergent and thus are rather weak. Alternatively, it may mean that only a small fraction of the cell's receptors are needed to mediate adhesion. In order to explore this latter concept, we have coated substrata with various concentrations of PB1, a monoclonal antibody with a high affinity for fibronectin receptor. We demonstrate that coating the substratum with increasing concentrations of PB1 results in increasing amounts of 140-kDa receptor becoming bound to the substratum in detergent-insoluble form. However, the amount of receptor bound does not necessarily correlate with the degree of cell adhesion and spreading. Thus, coating the substratum with 5 μg/ml of PB1 results in essentially complete attachment and spreading of CHO cells, but only a small fraction of the 140-kDa receptor becomes substratum bound. Coating with 50 μg/ml of PB1 produces no further increase in cell adhesion and spreading, but results in the detergent-stable association of a large fraction of the total receptor pool with the substratum. These observations suggest the possibility of there being “spare” receptors for cell adhesion processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call