Abstract

To investigate the association of cytochrome P450 2E1 (CYP2E1) C-1054T (rs2031920) and 96-bp I/D genetic variations with the risk of polycystic ovary syndrome (PCOS), and to estimate the effects of genotypes on the clinical, metabolic, hormonal, and oxidative stress indicators. This case-control study included 762 control women and 1034 patients with PCOS. Genotypes were determined using polymerase chain reaction and/or restriction fragment length polymorphism analysis. Clinical and biochemical parameters were also analyzed. Frequencies of the TT + CT genotype (35.4 vs. 28.9%) and T allele (19.6 vs. 16.0%) of the CYP2E1 C-1054T polymorphism were significantly higher in the PCOS group than in the control group (OR = 1.350, 95% CI 1.103-1.652, P = 0.004 for the dominant model). Genotype TT + CT remained a significant predictor of PCOS in a logistic regression model including age, body mass index (BMI), and recruitment year of participants (OR = 1.345, 95% CI 1.071-1.688, P = 0.011). No statistical differences were found in the genotype and allele frequencies of CYP2E1 96-bp I/D polymorphism. However, the combined genotype DD/TT + CT was related to an increased risk of PCOS when the DD/CC wild-type combined genotype was used as a reference. Patients with the I allele of 96-bp I/D polymorphism had a lower BMI but higher plasma apolipoprotein B and oxidized low-density lipoprotein cholesterol levels than those with the DD genotype. CYP2E1 C-1054T, but not 96-bp I/D, genetic polymorphism is associated with an increased risk of PCOS in Chinese women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call