Abstract

Association studies in candidate genes have been widely used to search for common low penetrance susceptibility alleles, but few definite associations have been established. We have conducted association studies in breast cancer using an empirical single nucleotide polymorphism (SNP) tagging approach to capture common genetic variation in genes that are candidates for breast cancer based on their known function. We genotyped 710 SNPs in 120 candidate genes in up to 4,400 breast cancer cases and 4,400 controls using a staged design. Correction for population stratification was done using the genomic control method, on the basis of data from 280 genomic control SNPs. Evidence for association with each SNP was assessed using a Cochran–Armitage trend test (p-trend) and a two-degrees of freedom χ2 test for heterogeneity (p-het). The most significant single SNP (p-trend = 8 × 10−5) was not significant at a nominal 5% level after adjusting for population stratification and multiple testing. To evaluate the overall evidence for an excess of positive associations over the proportion expected by chance, we applied two global tests: the admixture maximum likelihood (AML) test and the rank truncated product (RTP) test corrected for population stratification. The admixture maximum likelihood experiment-wise test for association was significant for both the heterogeneity test (p = 0.0031) and the trend test (p = 0.017), but no association was observed using the rank truncated product method for either the heterogeneity test or the trend test (p = 0.12 and p = 0.24, respectively). Genes in the cell-cycle control pathway and genes involved in steroid hormone metabolism and signalling were the main contributors to the association. These results suggest that a proportion of SNPs in these candidate genes are associated with breast cancer risk, but that the effects of individual SNPs is likely to be small. Large sample sizes from multicentre collaboration will be needed to identify associated SNPs with certainty.

Highlights

  • Breast cancer tends to cluster in families, with disease being approximately 2-fold more common in first-degree relatives of cases [1]

  • We have investigated over 700 common variants in genes that are candidates for breast cancer susceptibility in a large case-control study of breast cancer, but no single variant was identified at an appropriate level of statistical significance

  • The purpose of this study was to consider these data as a whole, using a novel method, the admixture maximum likelihood test, to test the hypothesis that a proportion of the variants we investigated are associated with breast cancer

Read more

Summary

Introduction

Breast cancer tends to cluster in families, with disease being approximately 2-fold more common in first-degree relatives of cases [1]. The higher rate of most cancers in the monozygotic twins of cases than in dizygotic twins or siblings suggests that most of the familial clustering is the result of inherited genetic variation rather than lifestyle or environmental factors [2]. Some of this clustering occurs as part of specific familial breast cancer syndromes where disease results from single alleles conferring a high risk. Allelic association is present when the distribution of genotypes differs in cases and controls Such an association provides evidence that the locus under study, or a neighbouring locus, is related to disease susceptibility

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.