Abstract

Globally, since the end of December 2019, coronavirus disease (COVID-19) has been recognized as a severe infectious disease. Therefore, this study has been attempted to examine the linkage between climatic variables and COVID-19 particularly in National Capital Territory of Delhi (NCT of Delhi), India. For this, daily data of COVID-19 has been used for the period March 14 to June 11, 2020, (90 days). Eight climatic variables such as maximum, minimum and mean temperature (°C), relative humidity (%), bright sunshine hours, wind speed (km/h), evaporation (mm), and rainfall (mm) have been analyzed in relation to COVID-19. To study the relationship among different climatic variables and COVID-19 spread, Karl Pearson’s correlation analysis has been performed. The Mann–Kendall method and Sen’s slope estimator have been used to detect the direction and magnitude of COVID-19 trends, respectively. The results have shown that out of eight selected climatic variables, six variables, viz. maximum temperature, minimum temperature, mean temperature, relative humidity, evaporation, and wind speed are positively associated with coronavirus disease cases (statistically significant at 95 and 99% confidence levels). No association of coronavirus disease has been found with bright sunshine hours and rainfall. Besides, COVID-19 cases and deaths have shown increasing trends, significant at 99% confidence level. The results of this study suggest that climatic conditions in NCT of Delhi are favorable for COVID-19 and the disease may spread further with the increasing temperature, relative humidity, evaporation and wind speed. This is the only study which has presented the analysis of COVID-19 spread in relation to several climatic variables for the most densely populated and rapidly growing city of India. Thus, considering the results obtained, effective policies and actions are necessary especially by identifying the areas where the spread rate is increasing rapidly in this megacity. The prevention and protection measures should be adopted aiming at to reduce the further transmission of disease in the city.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call