Abstract

BackgroundIn the process of percutaneous coronary intervention (PCI), patients with ST-segment elevation myocardial infarction (STEMI) may receive large doses of the iodine contrast agent. Some adverse events may be aroused if the patients receive the gadolinium agents. We investigate the association between cine cardiac magnetic resonance (CMR)-based radiomics signature and microvascular obstruction (MVO) in patients with STEMI.MethodsA total of 116 STEMI patients who received continuous CMR within 6 days after PCI were retrospectively included in this study. According to the late gadolinium enhancement (LGE) of CMR, the myocardial infarction (MI) was divided into with and without MVO. Radiomic features were extracted from cine CMR images and the least absolute shrinkage and selectionator operator (LASSO) algorithm was used for features selection and radiomic signatures construction. Binary logistic regression was used to assess association between radiomic signatures and MVO with adjusted for baseline clinical characteristics.ResultsOf 116 patients with STEMI, MI with MVO was found in 50 patients and MI without MVO was found in 66 patients. LASSO regression selected five radiomics features for radiomics signature construction. Logistic regression revealed that radiomics score, high sensitivity C-reactive protein (hs-CRP) and creatine phosphokinases (CPK) were independent risk factors for MVO with odds ratio (OR) of 4.41 (95% CI: 2.26–9.93), 1.018 (95% CI: 1.006–1.034) and 1.0007 (95% CI: 1.0004–1.0012), respectively. Area under curve (AUC) of receiver operating characteristic (ROC) of radiomics score to predict MVO was 0.75 (95% CI: 0.68–0.85).ConclusionsCine CMR-based radiomics signature was an independent predictive factor of MVO in patients with STEMI, which showed the potential of this contrast free radiomics signature to be an imaging biomarker for MVO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.