Abstract

BackgroundIn recent years, the use of chest ultrasonography to detect lung water has received growing attention in clinical research. Estimation of the number of B-lines using lung ultrasound is now a standard method for the evaluation of pulmonary congestion. In the present study, we examined the relation between the number of B-lines and clinical parameters in hemodialysis patients.MethodsA total of 49 consecutive patients receiving maintenance hemodialysis were enrolled in this study. Lung ultrasound was performed using Vscan® (GE Healthcare, Japan). Bilateral scanning of the anterior and lateral chest walls was performed with the patient in a supine position just after the start of the hemodialysis therapy. The total number of B-lines was estimated. We investigated the relationships between the number of B-lines and other clinical parameters.ResultsPatient heart rate and the serum log [NT-proBNP] level were positively correlated (P = 0.009 and 0.003, respectively), and body weight and the serum albumin and creatinine level were negatively correlated with the number of B-lines (P = 0.023, 0.001, and 0.011, respectively).ConclusionsThe number of B-lines was positively correlated with the serum N-terminal pro-brain natriuretic peptide level. Lung ultrasound can quantify lung edema. Body weight and the serum albumin and creatinine level were negatively correlated with the number of B-lines. Careful attention to the presence of pulmonary edema is needed in patients with a low body weight and a low serum albumin and creatinine level.

Highlights

  • In recent years, the use of chest ultrasonography to detect lung water has received growing attention in clinical research

  • We examined the relation between the number of B-lines and clinical parameters in hemodialysis patients

  • Heart rate and the serum log [NT-proBNP] level were positively correlated (P = 0.009 and 0.003, respectively), and body weight and the serum albumin and creatinine levels were negatively correlated with the number of B-lines (P = 0.023, 0.001 and 0.011, respectively)

Read more

Summary

Introduction

The use of chest ultrasonography to detect lung water has received growing attention in clinical research. To estimate the volume status, several methods have been proposed, such as evaluating the natriuretic peptide levels [3, 4], the dimensions and collapsibility of the inferior vena cava [5], chest X-ray signs, and bioelectrical impedance analysis techniques [6, 7]. Each of these methods has significant theoretical and practical limitations. In patients with heart failure, the number of B-lines was correlated with the degree of extravascular lung water [11], and Kuzuhara et al Renal Replacement Therapy (2017) 3:17

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.