Abstract

Longevity is in part (25%) inherited, and genetic studies aim to uncover allelic variants that play an important role in prolonging life span. Results to date confirm only a few gene variants associated with longevity, while others show inconsistent results. However, GWAS studies concentrate on single nucleotide polymorphisms, and there are only a handful of studies investigating variable number of tandem repeat variations related to longevity. Recently, Grady and colleagues (2013) reported a remarkable (66%) accumulation of those carrying the 7 repeat allele of the dopamine D4 receptor gene in a large population of 90–109 years old Californian centenarians, as compared to an ancestry-matched young population. In the present study we demonstrate the same association using continuous age groups in an 18–97 years old Caucasian sample (N = 1801, p = 0.007). We found a continuous pattern of increase from 18–75, however frequency of allele 7 carriers decreased in our oldest age groups. Possible role of gene-environment interaction effects driven by historical events are discussed. In accordance with previous findings, we observed association preferentially in females (p = 0.003). Our results underlie the importance of investigating non-disease related genetic variants as inherited components of longevity, and confirm, that the 7-repeat allele of the dopamine D4 receptor gene is a longevity enabling genetic factor, accumulating in the elderly female population.

Highlights

  • Age at death in adulthood has a heritability of approximately 25% [1]

  • Association of other genetic polymorphisms did not reach the level of genome wide significance, identified pathways and genetic signatures have been shown to be important in longevity [2]

  • To our knowledge there are no other reports of this remarkable association, and the present study is the first attempt to investigate association of the DRD4 VNTR using detailed age ranges (Fig 1)

Read more

Summary

Introduction

Age at death in adulthood has a heritability of approximately 25% [1]. According to a recent review of genome-wide association studies (GWAS) APOE and FOXO3A gene variants are associated with longevity [2]. Association of other genetic polymorphisms did not reach the level of genome wide significance, identified pathways and genetic signatures have been shown to be important in longevity [2]. Inheritance of long life span seems to be rather complex, with modest individual genetic effects, along with significant gene–environment interactions.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call