Abstract
BackgroundFragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. The genetic variants underlying this genetic contribution are largely unknown.MethodsWe performed a large-scale association study investigating more than 25,000 single nucleotide polymorphisms (SNPs) located within 16,000 genes. Allele frequencies were estimated in contrasting DNA pools from white females selected for low (<0.87 g/cm2, n = 319) and high (> 1.11 g/cm2, n = 321) BMD at the lumbar spine. Significant findings were verified in two additional sample collections.ResultsBased on allele frequency differences between DNA pools and subsequent individual genotyping, one of the candidate loci indicated was the phosphodiesterase 4D (PDE4D) gene region on chromosome 5q12. We subsequently tested the marker SNP, rs1498608, in a second sample of 138 white females with low (<0.91 g/cm2) and 138 females with high (>1.04 g/cm2) lumbar spine BMD. Odds ratios were 1.5 (P = 0.035) in the original sample and 2.1 (P = 0.018) in the replication sample. Association fine mapping with 80 SNPs located within 50 kilobases of the marker SNP identified a 20 kilobase region of association containing exon 6 of PDE4D. In a second, family-based replication sample with a preponderance of females with low BMD, rs1498608 showed an opposite relationship with BMD at different sites (p = 0.00044-0.09). We also replicated the previously reported association of the Ser37Ala polymorphism in BMP2, known to interact biologically with PDE4D, with BMD.ConclusionThis study indicates that variants in the gene encoding PDE4D account for some of the genetic contribution to bone mineral density variation in humans. The contrasting results from different samples indicate that the effect may be context-dependent. PDE4 inhibitors have been shown to increase bone mass in normal and osteopenic mice, but up until now there have been no reports implicating any member of the PDE4 gene family in human osteoporosis.
Highlights
Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations
In this paper we report the most advanced of these, which is the association of a variation in PDE4D, the gene encoding cyclic AMP-dependent phosphodiesterase 4D, with lumbar spine Bone mineral density (BMD)
We performed a single PCR and primer extension reaction for each single nucleotide polymorphisms (SNPs) on two DNA pools consisting of equimolar amounts of DNA from each individual in the low BMD group and high BMD group, respectively
Summary
Fragility fractures caused by osteoporosis are a major cause of morbidity and mortality in aging populations. Bone mineral density (BMD) is a useful surrogate marker for risk of fracture and is a highly heritable trait. Bone mineral density (BMD) measured with dual energy X-ray absorptiometry (DEXA) has been widely used to estimate the risk of fracture in epidemiological studies and to study treatment effects of antiresorptive agents in clinical trials. There are several well documented environmental and biological factors known to influence bone mineral density and the risk of fragility fractures including female gender, age, previous fragility fracture, low body weight, reduced lifetime exposure to estrogen, low calcium intake, physical inactivity, vitamin D deficiency, smoking, and excessive alcohol consumption [2,3,4,5]. The associations reported far that have been independently validated account for only a small portion of the genetic contribution to BMD and osteoporosis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.