Abstract

ABSTRACTGenomes are known to have a large number of repetitive elements. Emerging evidence suggests that these non-coding elements may play an important regulatory role. However, few studies have investigated the effect of repetitive elements on R-loop formation. In this study, we found different repetitive elements related to R-loop formation in various species. By controlling length and genomic distributions, we observed that satellites, long interspersed nuclear elements (LINEs), and DNAs were each specifically enriched for R-loops in humans, fruit flies, and Arabidopsis thaliana, respectively. R-loops also tended to arise in regions of low-complexity or simple repeats across species. We also found that the repetitive elements associated with R-loop formation differ according to developmental stage. For instance, LINEs and long terminal repeats (LTRs) are more likely to contain R-loops in embryos (fruit fly) and then turn out to be low-complexity and simple repeats in post-developmental S2 cells. Our results indicate that repetitive elements may have species-specific or development-specific regulatory effects on R-loop formation. This work advances our understanding of repetitive elements and R-loop biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call