Abstract

BackgroundHypertension, clinically defined by elevated blood pressure (BP), is an important cause of mortality and morbidity worldwide. Many risk factors for hypertension are known, including a positive family history, which suggests that genetics contribute to interindividual BP variation. Genome-wide association studies (GWAS) have identified > 1000 loci associated with BP, yet the identity of the genes responsible for these associations remains largely unknown. MethodsTo pinpoint genes that causally affect variation of BP in humans, we analyzed predicted loss-of-function (pLoF) variants in the UK Biobank whole-exome sequencing dataset (n = 454,709 participants, 6% non-European ancestry). We analyzed genetic associations between systolic or diastolic BP (SBP/DBP) and single pLoF variants (additive and recessive genetic models) as well as with the burden of very rare pLoF variants (minor allele frequency [MAF] < 0.01%). ResultsSingle pLoF variants in 10 genes were associated with BP (ANKDD1B, ENPEP, PNCK, BTN3A2, C1orf145 [OBSCN-AS1], CASP9, DBH, KIAA1161 [MYORG], OR4X1, and TMC3). We also found a burden of rare pLoF variants in 5 additional genes associated with BP (TTN, NOS3, FES, SMAD6, COL21A1). Except for PNCK, which is located on the X-chromosome, these genes map near variants previously associated with BP by GWAS, validating the study of pLoF variants to prioritize causal genes at GWAS loci. ConclusionsOur study highlights 15 genes that likely modulate BP in humans, including 5 genes that harbour pLoF variants associated with lower BP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call