Abstract
Finding direct dependencies between genetic pathways and diseases has been the target of multiple studies as it has many applications. However, due to cellular heterogeneity and limitations of the number of samples for bulk expression profiles, such studies have faced hurdles in the past. Here, we propose a method to perform single-cell expression-based inference of association between pathway, disease and cell-type (sci-PDC), which can help to understand their cause and effect and guide precision therapy. Our approach highlighted reliable relationships between a few diseases and pathways. Using the example of diabetes, we have demonstrated how sci-PDC helps in tracking variation of association between pathways and diseases with changes in age and species. The variation in pathways-disease associations in mice and humans revealed critical facts about the suitability of the mouse model for a few pathways in the context of diabetes. The coherence between results from our method and previous reports, including information about the drug target pathways, highlights its reliability for multidimensional utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.