Abstract

Acinetobacter baumannii is an opportunistic pathogen that has been associated with severe infections and outbreaks in hospitals. At present, very little is known about the biology of this bacterium, particularly as regards mechanisms of adaptation, persistence and virulence. To investigate the growth phase-dependent regulation of proteins in this microorganism, we analyzed the proteomic pattern of A. baumannii ATCC 17978 at different stages of in vitro growth. In this study, proteomics analyses were conducted using 2-DE and MALDI-TOF/TOF complemented by iTRAQ LC-MS/MS. Here we have identified 107 differentially expressed proteins. We highlight the induction of proteins associated with signaling, putative virulence factors and response to stress (including oxidative stress). We also present evidence that ROS (O(2)(-) and OH(-)) and RNI (ONOO(-)) accumulate during late stages of growth. Further assays demonstrated that stationary cells survive at high concentrations of H(2)O(2) (30 mM), the O(2)(-) donor menadione (500 muM) or the NO donor sodium nitroprusside (1 mM), and showed a higher survival rate against several bactericidal antibiotics. The growth phase-dependent changes observed in the A. baumannii proteome are discussed within a context of adaptive biological responses, including those related to ROS and RNI stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.