Abstract
Associated Particle Imaging (API) is an active neutron probe technique that provides a 3-D image with elemental composition of the material under interrogation, and so occupies a unique niche in the interrogation of unknown objects. The highly penetrating nature of neutrons enables API to provide detailed information about targets of interest that are hidden from view. Due to the isotropic nature of the induced reactions, radiation detectors can be set on the same side of the object as the neutron source, so that the object can be interrogated from a single side. At the heat of the system is a small generator that produces a continuous, monoenergetic flux of neutrons. By measuring the trajectory of coincident alpha particles that are produced as part of the process, the trajectory of the neutron can be inferred. Interactions between a neutron and the material in its path often produce a gamma ray whose energy is characteristic of that material. When the gamma ray is detected, its energy is measured and combined with the trajectory information to produce a 3-D image of the composition of the object being interrogated. During the course of API development, a number of improvements have been made. A new, more rugged sealed Tube Neutron Generator (STNG) has been designed and fabricated that is less susceptible to radiation damage and better able to withstand the rigors of fielding than earlier designs. A specialized high-voltage power supply for the STNG has also been designed and built. A complete package of software has been written for the tasks of system calibration, diagnostics and data acquisition and analysis. A portable system has been built and field tested, proving that API can be taken out of the lab and into real-world situations, and that its performance in the field is equal to that in the lab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.