Abstract

In this paper, tangent, principal normal and binormal wise associated curves are defined such that each of these vectors of any given curve lies on the osculating, normal and rectifying plane of its partner, respectively. For each associated curve, a new moving frame and the corresponding curvatures are formulated in terms of Frenet frame vectors. In addition to this, the possible solutions for distance functions between the curve and its associated mate are discussed. In particular, it is seen that the involute curves belong to the family of tangent associated curves in general and the Bertrand and the Mannheim curves belong to the principal normal associated curves. Finally, as an application, we present some examples and map a given curve together with its partner and its corresponding moving frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.