Abstract

AbstractPrecipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October to April), are still not fully understood. In this study, the daily China gridded precipitation product of CN05.1 as well as the NCEP-NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade-1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo-western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia Subtropical Westerly jet may contribute to the enhanced divergence at upper level and anomalous ascending motion above the TRH region leading to more precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.