Abstract

Random search-based scheduling algorithms, such as particle swarm optimization (PSO), are often used to solve independent multi-task scheduling problems in cloud, but the quality of optimal solution of the algorithm often has greater deviation and poor stability when the tasks are associate. In this paper, we propose an algorithm called SADCPSO to solve this challenging problem, which improves the PSO algorithm by uniquely integrating the self-adaptive inertia weight, disruption operator and chaos operator. In particular, the self-adaptive inertia weight is adopted to adjust the convergence rate, the disruption operator is applied to prevent the loss of population diversity, and the chaos operator is introduced to prevent the solution from tending to jump into the local optimal. Furthermore, we also provide a scheme to apply the SADCPSO algorithm to solve the associate multi-task scheduling problem. In the simulation experiments, we initialize two associate multi-task scheduling examples and take the minimum execution time as our optimization objective. The simulation results demonstrate that the optimal solution of our proposed algorithm has better quality and stability than the baseline PSO algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.