Abstract

Due to anthropogenic activities, chromium (Cr) contamination is ubiquitous with deleterious effects on plant and soil microbiota. Present study was designed to address beneficial effects of Bacillus xiamenensis PM14 on Sesbania sesban. Its physiological and biochemical attributes along with enhanced antioxidant enzyme activities under different levels of Cr toxicity (50, 100 and 200 mg kg−1) were evaluated. After harvesting at 50 days of sowing, plant growth attributes (root and shoot length, fresh and dry weight), physiological parameters (chlorophyll a, b and carotenoid content), antioxidant activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content, electrolyte leakage, proline, relative water content and total Cr uptake in S. sesban were recorded. Experiment was statistically managed as complete randomized design (CRD). Results revealed that Cr stress reduced plant growth, relative water content at all levels of Cr contamination. However, inoculation of B. xiamenensis PM14 positively influence all parameters of S. sesban both under normal and stressed conditions. Inoculation of B. xiamenensis PM14 promoted plant growth (root length 17.08%, shoot length 28.36%) physiological attributes (chlorophyll a 55.26%, chlorophyll b 59.13%), antioxidant activities (superoxide dismutase 30.09%, peroxidase 6.96% and catalase 0.89%), relative water content 25.79%, enhanced total Cr uptake 47.33% and reduced proline 12.33%, malondialdehyde content 27.53% and electrolyte leakage 2.73% in S. sesban at 200 mg kg−1 Cr stress as compared to uninoculated plants grown under the same level of Cr. Our findings revealed first report of B. xiamenensis as phytoremediator and its inoculation on Sesbania plant. It also exposed dual effects of B. xiamenensis to ameliorate Cr stress along with improved plant growth and induced heavy metal stress tolerance in spiked soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.