Abstract

PurposeAdaptive grippers are versatile end effectors that mechanically adapt their shapes to the objects they seize, allowing for soft and delicate grasps while still allowing for strong contact forces if needed and therefore they are well suited for industrial applications. The purpose of this paper is to present a software‐oriented approach to design optimal architectures of linkage‐driven adaptive (often a.k.a underactuated) fingers with three degrees of freedom.Design/methodology/approachThe user of the software presented in this paper can design planar underactuated fingers following defined constraints. The software uses an algorithm able to compute the internal and contact forces generated, respectively, in and by the finger, it is also capable of automating the design of non‐straight links to eliminate mechanical interferences, and includes results from a topological synthesis to generate all possible architectures. The mechanisms are evaluated for many criteria such as the volume of their workspaces, stability, force isotropy, stiffness of their grasps, and compactness.FindingsThis article introduces 11 new designs of underactuated fingers for four different usages, and many of these variants are good candidates for a physical realization. One of the interesting results of this work is the recurrence of S3 variants coupled with torque amplifiers or closely resembling designs using many unrelated performance criteria.Originality/valueThis paper is the first, to the best of the authors' knowledge, to investigate the systematic design of underactuated fingers driven by linkages considering not one but dozens of mechanical architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.