Abstract

Enhancing road safety and traffic efficiency are the important aspects and goals that automakers and researchers trying to achieve in recent years. The autonomous vehicle technology has been identified as a solution to achieve these goals. However, the adoption of fully autonomous vehicles in the current market is still in the very early stages of deployment. The objective of this paper is to develop a Cooperative Adaptive Cruise Control (CACC) model at a road intersection using platooning car-following mobility models, object detection at traffic light units, and Vehicle-to-Everything (V2X) communication through vehicular ad hoc networks (VANETs). The mobility model considers traffic simulation using the SUMO-PLEXE-VEINS platforms integration. Next, a prototype of an assisted car platooning system consisting of roadside unit (RSU) and on-board units (OBU) is developed using artificial intelligence (AI)-based smart traffic light for obstruction detection at an intersection and modified remote-control cars with V2X communication equipped with in-vehicle alert notification, respectively. The results show accurate detection of obstruction by the proposed assisted car platooning system, and an optimised smart traffic light operation that can reduce congestion and fuel consumption, improve traffic flow, and enhance road safety. The findings from this paper can be used as a baseline for the framework of CACC implementation by legislators, policymakers, infrastructure providers, and vehicle manufacturers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call