Abstract

Abstract The efficacy of a novel ensemble data assimilation (DA) technique is examined in the climate field reconstruction (CFR) of surface temperature. A minimalistic, computationally inexpensive DA technique is employed that requires only a static ensemble of climatologically plausible states. Pseudoproxy experiments are performed with both general circulation model (GCM) and Twentieth Century Reanalysis (20CR) data by reconstructing surface temperature fields from a sparse network of noisy pseudoproxies. The DA approach is compared to a conventional CFR approach based on principal component analysis (PCA) for experiments on global domains. DA outperforms PCA in reconstructing global-mean temperature in all experiments and is more consistent across experiments, with a range of time series correlations of 0.69–0.94 compared to 0.19–0.87 for the PCA method. DA improvements are even more evident in spatial reconstruction skill, especially in sparsely sampled pseudoproxy regions and for 20CR experiments. It is hypothesized that DA improves spatial reconstructions because it relies on coherent, spatially local temperature patterns, which remain robust even when glacial states are used to reconstruct nonglacial states and vice versa. These local relationships, as utilized by DA, appear to be more robust than the orthogonal patterns of variability utilized by PCA. Comparing results for GCM and 20CR data indicates that pseudoproxy experiments that rely solely on GCM data may give a false impression of reconstruction skill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call