Abstract

Abstract A tropical cyclone (TC) circulation Tracking Radar Echo by Correlation technique (T-TREC) developed recently is applied to derive horizontal winds from single Doppler radar reflectivity Z data (combined with radial velocity Vr data when available). The typically much longer maximum range of Z observations compared to Vr data allows for much larger spatial coverage of the T-TREC-retrieved winds (VTREC) when a TC first enters the maximum range of a coastal radar. Retrieved using data from more than one scan volume, the T-TREC winds also contain valuable cross-beam wind information. The VTREC or Vr data at 30-min intervals are assimilated into the Advanced Regional Prediction System (ARPS) model at 3-km grid spacing using an ensemble Kalman filter, over a 2-h window shortly after Typhoon Jangmi (2008) entered the Vr coverage area of an operational weather radar of Taiwan. The assimilation of VTREC data produces analyses of the typhoon structure and intensity that more closely match observations than analyses produced using Vr data or the reference Global Forecast System (GFS) analysis. Subsequent 28-h forecasts of intensity, track, structure, and precipitation are also improved by assimilating VTREC data. Further sensitivity experiments show that assimilation of VTREC data can build up a reasonably strong vortex in 1 h, while a longer assimilation period is required to spin up the vortex when assimilating Vr. Although the difference between assimilating VTREC and Vr is smaller when the assimilation window is longer, the improvement from assimilating VTREC is still evident. Assimilating Z data in addition to Vr or VTREC results in little further improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.