Abstract

Abstract. Operational forecasting systems routinely assimilate daily means of sea ice concentration (SIC) from microwave radiometers in order to improve the accuracy of the forecasts. However, the temporal and spatial averaging of the individual satellite swaths into daily means of SIC entails two main drawbacks: (i) the spatial resolution of the original product is blurred (especially critical in periods with strong sub-daily sea ice movement), and (ii) the sub-daily frequency of passive microwave observations in the Arctic are not used, providing less temporal resolution in the data assimilation (DA) analysis and, therefore, in the forecast. Within the SIRANO (Sea Ice Retrievals and data Assimilation in NOrway) project, we investigate how challenges (i) and (ii) can be avoided by assimilating individual satellite swaths (level 3 uncollated) instead of daily means (level 3) of SIC. To do so, we use a regional configuration of the Barents Sea (2.5 km grid) based on the Regional Ocean Modeling System (ROMS) and the Los Alamos Sea Ice Model (CICE) together with the ensemble Kalman filter (EnKF) as the DA system. The assimilation of individual swaths significantly improves the EnKF analysis of SIC compared to the assimilation of daily means; the mean absolute difference (MAD) shows a 10 % improvement at the end of the assimilation period and a 7 % improvement at the end of the 7 d forecast period. This improvement is caused by better exploitation of the information provided by the SIC swath data, in terms of both spatial and temporal variance, compared to the case when the swaths are combined to form a daily mean before assimilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call