Abstract

AbstractThe benefits of assimilating Next Generation Weather Radar (NEXRAD) radial velocity data for convective systems have been demonstrated in previous studies. However, impacts of assimilation of such high spatial and temporal resolution observations on hurricane forecasts have not been demonstrated with the National Centers for Environmental Prediction (NCEP) Hurricane Weather and Research Forecasting (HWRF) system. This study investigates impacts of NEXRAD radial velocity data on forecasts of the evolution of landfalling hurricanes with different configurations of data assimilation. The sensitivity of data assimilation results to influencing parameters within the data assimilation system, such as the maximum range of the radar data, superobservations, horizontal and vertical localization correlation length scale, and weight of background error covariances, are examined. Two hurricane cases, Florence and Michael, which occurred in the summer of 2018 are chosen to conduct a series of experiments. Results show that hurricane intensity, asymmetric structure of inland wind and precipitation, and quantitative precipitation forecasting are improved. Suggestions for implementation of operational configurations are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call