Abstract

Nitrogen assimilation by microbial, biomass during the decay of organic material in soil may follow two patterns: (1) direct assimilation of low molecular weight organic N compounds (Direct hypothesis) or (2) immobilization of mineral N, while organic N is completely mineralized (MIT hypothesis). To test these hypotheses equal concentrations of NH 4-N and alanine-N were added to soils, either one or the other labeled with 15N, and incubated for 1.2 days. The K 2SO 4-extractable organic and mineral N and 15N and CO 2 release were measured periodically. Experimental results were compared with data computed by two versions of the model NCSOIL, that simulates the C-N turnover and 15N distribution among soil pools, and is structured to represent either the Direct or the MIT hypothesis. The fitted first order rate constant of mineralization of alanine was 3.2 d −1, following a delay of 0.25 d. Evolution of CO 2 proceeded at a considerable rate after alanine was decomposed and net N mineralization had ceased, indicating a rapid decomposition of the microbial population that consumed alanine. The isotopic dilution of mineral N proceeded very rapidly and fitted the simulation by MIT better than by the Direct model. The rate of 15N withdrawal from total extractable N was greater when alanine was labeled and fitted the prediction by the Direct model, but when NH 4 was the source of 15N, the Direct model failed to predict 15N consumption. It seemed that both pathways operated concurrently, with the Direct dominating N assimilation by the substrate specific population and the MIT operating at the level of the native soil population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.