Abstract
Microbial communities and soil carbon (C) have been shown to vary in response to increasing vegetation cover during soil development after deglaciation. However, little is known about the ability of microorganisms to utilize various C sources in glacier forefield soils. We supplied ecologically relevant 13C-labeled C sources (Chlorella, Penicillium and Festuca) to three distinct environments (supraglacial sediments, barren soils and vegetated soils) of the Damma glacier area to monitor 13CO2 production. We identified prokaryotic and fungal populations able to utilize these sources by using DNA-stable isotope probing coupled with Illumina MiSeq sequencing of ribosomal markers. A high initial 13CO2 pulse indicated that 13C-labeled microbial and plant material were consumed. The 13C-enriched DNA results indicated that betaproteobacterial taxa affiliated to the families Oxalobacteraceae and Comamonadaceae were important players in C utilization from different sources and present in all environments. In contrast, different fungal taxa played different roles in C degradation depending on the soil environment. Overall, our findings reveal that C utilization is driven by similar prokaryotic populations along a glacier forefield, while the distribution of active fungal populations are more influenced by environmental factors.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.