Abstract

Wind observations are critical for the better atmospheric analysis for Numerical Weather Prediction (NWP), particularly over the tropics. High-resolution direct wind observations are essential for defining smaller scales and deeper atmospheric structures. Recently launched Aeolus satellite delivers wind profiles that mostly satisfy these requirements, suitable for NWP assimilation. The main product from Aeolus is the horizontally projected Line of Sight wind component, a single component of wind, approximately zonal in nature over the tropics and more meridional over the Polar region, and the main limitation of this observation. Observing system experiments are conducted with the assimilation of individual components of radiosonde and pilot balloon winds to assess the impact of a single component of wind compared to the assimilation of full wind vector in the NCMRWF global assimilation and forecast system. Denial of the zonal component of wind in the assimilation system produced a larger observation increment (observation – model background) in the meridional wind than the full vector assimilation. In contrast, the observation increment of the zonal wind remains nearly the same, even after removing the meridional wind component from the assimilation system. Assimilation of both zonal and meridional components produced changes in the analysis fields of various meteorological variables; however, the zonal component plays a significant role in the tropics. Both wind components play an important role in controlling the humidity field, whereas only zonal components of wind impact the temperature field in the upper troposphere and lower stratosphere. Though the full vector wind assimilation produces a larger impact in the forecast fields of various meteorological variables, the zonal component has more impact than the meridional component. Verification of analysis and forecast wind against the satellite-derived atmospheric motion vectors clearly show the importance of both the horizontal components of winds in the lower troposphere. In contrast, the zonal component of wind alone has a high impact on the upper troposphere and lower stratosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call