Abstract

AbstractEnsemble data assimilation experiments were performed to assess the ability of satellite all-sky infrared brightness temperatures and different bias correction (BC) predictors to improve the accuracy of short-range forecasts used as the model background during each assimilation cycle. Satellite observations sensitive to clouds and water vapor in the upper troposphere were assimilated at hourly intervals during a 3-day period. Linear and nonlinear conditional biases were removed from the infrared observations using a Taylor series polynomial expansion of the observation-minus-background departures and BC predictors sensitive to clouds and water vapor or to variations in the satellite zenith angle. Assimilating the all-sky infrared brightness temperatures without BC degraded the forecast accuracy based on comparisons to radiosonde observations. Removal of the linear and nonlinear conditional biases from the satellite observations substantially improved the results, with predictors sensitive to the location of the cloud top having the largest impact, especially when higher-order nonlinear BC terms were used. Overall, experiments employing the observed cloud-top height or observed brightness temperature as the bias predictor had the smallest water vapor, cloud, and wind speed errors, while also having less degradation to temperatures than occurred when using other predictors. The forecast errors were smaller during these experiments because the cloud-height-sensitive BC predictors were able to more effectively remove the large conditional biases for lower brightness temperatures associated with a deficiency in upper-level clouds in the model background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.